BIOMIMETICS AND ARCHITECTURE Since the designs in nature are quite flawless, their inspirations are now frequently employed in architectural designs. All the features necessary in a structure, such as energy savings, beauty, functionality and durability have already been created in the natural world. No matter how many superior systems human beings may run across, their imitations can never be as good or practical as the originals. In order to copy nature’s designs and implement them in architectural design, a high level of engineering know-how is essential. Yet the living things in the natural world know nothing about load bearing or architectural principles. Nor do they have any opportunity of understanding them. All living things behave in the manner God inspires in them. In one verse, He reveals that all living things are under His control:
Oyster Shells—a Model for Light, Sturdy Roofs The shells of mussels and oysters resemble wavy hair because of their irregularly shapes. This shape allows the shells, despite being very lightweight, to withstand enormous pressure. Architects have employed their structure as a model for designing various roofs and ceilings. For example, the roof of Canada’s Royan Market was designed with the oyster shell in mind. 97
From the Water Lily to the Crystal Palace Built for the first World’s Fair in London in 1851, the Crystal Palace was a technological marvel of glass and iron. Some 35 meters (108 feet)high and covering an area of approximately 7,500 square meters (18 acres), it featured more than 200,000 panes of glass, each 30 by 120 centimeters (12-by-49 inches) in size.
The Crystal Palace was designed by landscape designer Joseph Paxton, who drew inspiration from Victoria amazonica, a species of water lily. Despite its very fragile appearance, this lily possesses huge leaves that are strong enough for people to stand on. When Paxton examined these leaves’ undersides, he found they were supported by fibrous extensions like ribs. Each leaf has radial ribs stiffened by slender crossribs. Paxton thought these ribs could be duplicated as weight-bearing iron struts, and the leaves themselves as the glass panes. In this way, he succeeded in constructing a roof made of glass and iron, which was very light yet still very strong. 98 The water lily begins growing in the mud at the bottom of Amazonian lakes, but in order to survive, it needs to reach the surface. When it comes to the surface of the water it stops growing, then starts forming thorn-tipped buds. In as little as a few hours, these buds open into enormous leaves up to two meters across. The more area they cover on the surface of the river, the more sunlight they can obtain with which to carry out photosynthesis. Another thing the root of the water lily requires is oxygen, of which there is little in the muddy bottom where the plant is rooted. However, tubes running down the long stems of the leaves, which can reach as much as 11 meters (35 feet)in height, serve as channels that carry oxygen from the leaves down to the roots. 99 As the seed starts to grow in the depths of the lake, how does it know that it will soon need light and oxygen, without which it can’t survive, and that everything it requires is at the surface of the water? A plant that has only just begun to germinate is unaware that the water around has a surface up above, and knows nothing of the Sun or oxygen.
According to evolutionist logic, therefore, new water lilies should have drowned under several feet of water and become extinct long ago. Yet the fact is that these water lilies are still around today, in all their perfection. Amazon lilies, after reaching the light and oxygen they need, curl their leaves upwards at the edges so that they do not fill with water and sink. These precautions may help them survive, but if the species is to continue, they need some insects to carry their pollen to other lilies. In the Amazon, beetles have a special attraction to the color white and therefore, select this lily’s flowers to land on. With the arrival of this six-legged guests, who will allow the Amazon lilies to survive down the generations, the petals close up, preventing the insects from escaping, while offering them large quantities of pollen. After holding them imprisoned for the whole night and throughout the next day, the flower then releases them, also changing color so that the beetles do not bring its own pollen back to it. The lily, formerly a shining white, now adorns the river in a dark pink. No doubt that all these flawless, perfectly calculated, and consecutive steps are not the work of the lily itself, which has no foreknowledge or planning abilities, but flow from the infinite wisdom of God, its Creator. All the details summarized briefly here demonstrate that, like all things in the universe, God created them with all the necessary systems to ensure their survival.
A Structure that Makes Bones More Resistant Even today, the Eiffel Tower is accepted as a marvel of engineering, but the event that led to its design took place back to 40 years before its construction. This was a study in Zurich aimed at revealing "the anatomical structure of the thigh bone." In the early 1850s, the anatomist Hermann von Meyer was studying the part of the thigh bone that inserts into the hip joint. The thigh bone head extends sideways into the hip socket, and bears the body's weight off-center. Von Meyer saw that the inside of the thigh bone, which is capable of withstanding a weight of one ton when in a vertical position, consists not of one single piece, but contains an orderly latticework of tiny ridges of bone known as trabeculae. In 1866, when the Swiss engineer Karl Cullman visited von Meyer’s laboratory, the anatomist von Meyer showed him a piece of bone he had been studying. Cullman realized that the bone’s structure was designed to reduce the effects of weight load and pressure. The trabeculae were effectively a series of studs and braces arranged along the lines of force generated when standing. As a mathematician and engineer, Cullman translated these findings into applicable theory and the model lead to the design of the Eiffel Tower. As in the thigh bone, the Eiffel Tower’s metal curves formed a lattice built from metal studs and braces. Thanks to this structure, the tower was easily able to stand up to the bending and shearing effects caused by the wind. 100
The Radiolaria Design Used as a Model in Dome Design Radiolaria and diatoms, organisms that live in the sea, are virtual catalogs of ideal solutions to architectural problems. In fact, these tiny creatures have inspired a great many large-scale architectural projects. The U.S. Pavilion at EXPO ’76 in Montreal is just one example. The pavilion’s dome was inspired by the radiolarians. 101 The Earthquake-Proof Design in Honeycombs
Architectural Designs Drawn from Spider Webs Some spiders spin webs that resemble a tarpaulin covering thrown over a bush. The web is borne by stretched threads attached to the edges of the bush. This load-bearing system lets the spider spread its web wide, while still making no concessions as to its strength. This marvelous technique has been imitated by man in many structures to cover wide areas. Some of these include the Jeddah Airport’s Pilgrim Terminal, the Munich Olympic Stadium, the Sydney National Athletic Stadium, zoos in Munich and Canada, Denver Airport in Colorado, and the Schlumberger Cambridge Research Centre building in England. To learn these web-building techniques all by itself, any spider species would have to undergo a long period of engineering training. That, of course, is out of the question. Spiders, knowing nothing about load-bearing or architectural design, merely behave in the manner God inspires in them.
|
|||||||||||||||||||||||||||
|
|||||||||||||||||||||||||||
|
97 “Biyonik, Dogayı Kopya Etmektir” (Bionics Copies Nature), Science et Vie, trans.: Dr.Hanaslı Gur, Bilim ve Teknik (Science and Technology), TUBITAK Publishings, July 1985, p. 21.
98 Smithsonian National Zoological Park; http://www.fonz.org/zoogoer/zg1999/28(4)biomimetics.htm
99 David Attenborough, The Private Life Of Plants, Princeton University Press, 1995, p. 291.
100 Smithsonian National Zoological Park; http://www.fonz.org/zoogoer/zg1999/28(4)biomimetics.htm
101 “Biyonik, Dogayı Kopya Etmektir,” (Bionics Copies Nature) Science et Vie, trans.: Dr.Hanaslı Gur, Bilim ve Teknik (Science and Technology), TUBITAK Publishings, July 1985, p. 21.
102 Erica Klarreich, “Good vibrations,” Nature Science Update, April 3, 2001.